REYQ8U7Y1B REYQ10U7Y1B REYQ10U7Y1B. REYQ12U7Y1B REYQ13U7Y1B REYQ14U7Y1B REYQ16U7Y1B. REYQ16U7Y1B REYQ18U7Y1B. REYQ18U7Y1B REYQ20U7Y1B. REYQ20U7Y1B REYQ22U7Y1B REYQ24U7Y1B REYQ26U7Y1B REYQ28U7Y1B REYQ30U7Y1B REYQ32U7Y1B REYQ34U7Y1B REYQ36U7Y1B REYQ38U7Y1B REYQ40U7Y1B REYQ42U7Y1B REYQ44U7Y1B REYQ46U7Y1B REYQ48U7Y1B REYQ50U7Y1B REYQ52U7Y1B REYQ54U7Y1B
System Outdoor unit module 1     REMQ5U   REMQ5U   REYQ8U   REYQ8U   REYQ8U   REYQ10U REYQ8U REYQ12U REYQ12U REYQ12U REYQ16U REYQ16U REYQ16U REYQ8U REYQ10U REYQ10U REYQ12U REYQ14U REYQ16U REYQ16U REYQ16U REYQ18U
  Outdoor unit module 2     REMQ5U   REYQ8U   REYQ8U   REYQ10U   REYQ12U   REYQ12U REYQ16U REYQ14U REYQ16U REYQ18U REYQ16U REYQ18U REYQ20U REYQ12U REYQ12U REYQ16U REYQ16U REYQ16U REYQ16U REYQ16U REYQ18U REYQ18U
  Outdoor unit module 3                                         REYQ18U REYQ18U REYQ16U REYQ16U REYQ16U REYQ16U REYQ18U REYQ18U REYQ18U
Recommended combination 4 x FXFQ50AVEB 4 x FXFQ63AVEB 4 x FXFQ63AVEB 6 x FXFQ50AVEB 3 x FXFQ50AVEB + 3 x FXFQ63AVEB 1 x FXFQ50AVEB + 5 x FXFQ63AVEB 4 x FXFQ63AVEB + 2 x FXFQ80AVEB 4 x FXFQ63AVEB + 2 x FXFQ80AVEB 4 x FXFQ50AVEB + 4 x FXFQ63AVEB 3 x FXFQ50AVEB + 5 x FXFQ63AVEB 10 x FXFQ50AVEB 2 x FXFQ50AVEB + 6 x FXFQ63AVEB 6 x FXFQ50AVEB + 4 x FXFQ63AVEB 4 x FXFQ50AVEB + 4 x FXFQ63AVEB + 2 x FXFQ80AVEB 7 x FXFQ50AVEB + 5 x FXFQ63AVEB 6 x FXFQ50AVEB + 4 x FXFQ63AVEB + 2 x FXFQ80AVEB 9 x FXFQ50AVEB + 5 x FXFQ63AVEB 8 x FXFQ63AVEB + 4 x FXFQ80AVEB 3 x FXFQ50AVEB + 9 x FXFQ63AVEB + 2 x FXFQ80AVEB 2 x FXFQ50AVEB + 10 x FXFQ63AVEB + 2 x FXFQ80AVEB 6 x FXFQ50AVEB + 10 x FXFQ63AVEB 9 x FXFQ50AVEB + 9 x FXFQ63AVEB 12 x FXFQ63AVEB + 4 x FXFQ80AVEB 6 x FXFQ50AVEB + 8 x FXFQ63AVEB + 4 x FXFQ80AVEB 1 x FXFQ50AVEB + 13 x FXFQ63AVEB + 4 x FXFQ80AVEB 12 x FXFQ63AVEB + 6 x FXFQ80AVEB 3 x FXFQ50AVEB + 13 x FXFQ63AVEB + 4 x FXFQ80AVEB 6 x FXFQ50AVEB + 14 x FXFQ63AVEB + 2 x FXFQ80AVEB 9 x FXFQ50AVEB + 15 x FXFQ63AVEB
Recommended combination 2 4 x FXSQ50A2VEB 4 x FXSQ63A2VEB 4 x FXSQ63A2VEB 6 x FXSQ50A2VEB 3 x FXSQ50A2VEB + 3 x FXSQ63A2VEB 1 x FXSQ50A2VEB + 5 x FXSQ63A2VEB 4 x FXSQ63A2VEB + 2 x FXSQ80A2VEB 4 x FXSQ63A2VEB + 2 x FXSQ80A2VEB 4 x FXSQ50A2VEB + 4 x FXSQ63A2VEB 3 x FXSQ50A2VEB + 5 x FXSQ63A2VEB 10 x FXSQ50A2VEB 2 x FXSQ50A2VEB + 6 x FXSQ63A2VEB 6 x FXSQ50A2VEB + 4 x FXSQ63A2VEB 4 x FXSQ50A2VEB + 4 x FXSQ63A2VEB + 2 x FXSQ80A2VEB 7 x FXSQ50A2VEB + 5 x FXSQ63A2VEB 6 x FXSQ50A2VEB + 4 x FXSQ63A2VEB + 2 x FXSQ80A2VEB 9 x FXSQ50A2VEB + 5 x FXSQ63A2VEB 8 x FXSQ63A2VEB + 4 x FXSQ80A2VEB 3 x FXSQ50A2VEB + 9 x FXSQ63A2VEB + 2 x FXSQ80A2VEB 2 x FXSQ50A2VEB + 10 x FXSQ63A2VEB + 2 x FXSQ80A2VEB 6 x FXSQ50A2VEB + 10 x FXSQ63A2VEB 9 x FXSQ50A2VEB + 9 x FXSQ63A2VEB 12 x FXSQ63A2VEB + 4 x FXSQ80A2VEB 6 x FXSQ50A2VEB + 8 x FXSQ63A2VEB + 4 x FXSQ80A2VEB 1 x FXSQ50A2VEB + 13 x FXSQ63A2VEB + 4 x FXSQ80A2VEB 12 x FXSQ63A2VEB + 6 x FXSQ80A2VEB 3 x FXSQ50A2VEB + 13 x FXSQ63A2VEB + 4 x FXSQ80A2VEB 6 x FXSQ50A2VEB + 14 x FXSQ63A2VEB + 2 x FXSQ80A2VEB 9 x FXSQ50A2VEB + 15 x FXSQ63A2VEB
Recommended combination 3 4 x FXMQ50P7VEB 4 x FXMQ63P7VEB 4 x FXMQ63P7VEB 6 x FXMQ50P7VEB 3 x FXMQ50P7VEB + 3 x FXMQ63P7VEB 1 x FXMQ50P7VEB + 5 x FXMQ63P7VEB 4 x FXMQ63P7VEB + 2 x FXMQ80P7VEB 4 x FXMQ63P7VEB + 2 x FXMQ80P7VEB 4 x FXMQ50P7VEB + 4 x FXMQ63P7VEB 3 x FXMQ50P7VEB + 5 x FXMQ63P7VEB 10 x FXMQ50P7VEB 2 x FXMQ50P7VEB + 6 x FXMQ63P7VEB 6 x FXMQ50P7VEB + 4 x FXMQ63P7VEB 4 x FXMQ50P7VEB + 4 x FXMQ63P7VEB + 2 x FXMQ80P7VEB 7 x FXMQ50P7VEB + 5 x FXMQ63P7VEB 6 x FXMQ50P7VEB + 4 x FXMQ63P7VEB + 2 x FXMQ80P7VEB 9 x FXMQ50P7VEB + 5 x FXMQ63P7VEB 8 x FXMQ63P7VEB + 4 x FXMQ80P7VEB 3 x FXMQ50P7VEB + 9 x FXMQ63P7VEB + 2 x FXMQ80P7VEB 2 x FXMQ50P7VEB + 10 x FXMQ63P7VEB + 2 x FXMQ80P7VEB 6 x FXMQ50P7VEB + 10 x FXMQ63P7VEB 9 x FXMQ50P7VEB + 9 x FXMQ63P7VEB 12 x FXMQ63P7VEB + 4 x FXMQ80P7VEB 6 x FXMQ50P7VEB + 8 x FXMQ63P7VEB + 4 x FXMQ80P7VEB 1 x FXMQ50P7VEB + 13 x FXMQ63P7VEB + 4 x FXMQ80P7VEB 12 x FXMQ63P7VEB + 6 x FXMQ80P7VEB 3 x FXMQ50P7VEB + 13 x FXMQ63P7VEB + 4 x FXMQ80P7VEB 6 x FXMQ50P7VEB + 14 x FXMQ63P7VEB + 2 x FXMQ80P7VEB 9 x FXMQ50P7VEB + 15 x FXMQ63P7VEB
Continuous heating     Yes   Yes   Yes   Yes   Yes   Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Cooling capacity Prated,c kW 22.4 (1) 28.0 (1) 28.0 (1) 33.5 (1) 36.4 (1) 40.0 (1) 44.8 (1) 45.0 (1) 50.4 (1) 50.4 (1) 55.9 (1) 52.0 (1) 61.5 (1) 67.4 (1) 73.5 (1) 78.5 (1) 83.9 (1) 90.0 (1) 95.4 (1) 97.0 (1) 106.3 (1) 111.9 (1) 118.0 (1) 123.5 (1) 130.0 (1) 135.0 (1) 140.4 (1) 145.8 (1) 151.2 (1)
Heating capacity Prated,h kW 13.7 16.0 16.0 18.4 21.7 20.6 23.2 23.2 27.9 27.9 31.0 31.0 34.4 36.9 37.1 39.7 44.4 46.4 51.1 54.2 58.1 58.9 60.9 62.9 67.0 69.6 74.3 79.0 83.7
  Max. 6°CWB kW 25.0 (2) 31.5 (2) 32.0 (2) 37.5 (2) 41.0 (2) 45.0 (2) 50.0 (2) 50.0 (2) 56.5 (2) 56.5 (2) 62.5 (2) 63.0 (2) 69.0 (2) 75.0 (2) 82.5 (2) 87.5 (2) 94.0 (2) 100.0 (2) 106.5 (2) 113.0 (2) 119.0 (2) 125.5 (2) 131.5 (2) 137.5 (2) 145.0 (2) 150.0 (2) 156.5 (2) 163.0 (2) 169.5 (2)
ESEER - Automatic 7.41 7.37 7.77 6.84 7.54 7.05 7.41 6.63 7.38 6.26 7.06 5.68 7.07 6.87 6.95 6.72 6.48 6.63 6.43 6.06 6.66 6.68 6.79 6.68 6.75 6.63 6.49 6.37 6.26
ESEER - Standard 6.25 5.78 6.55 5.36 6.36 5.45 6.25 5.14 5.98 4.84 5.68 4.39 5.54 5.46 5.41 5.23 5.03 5.14 4.97 4.70 5.25 5.20 5.28 5.20 5.23 5.14 5.03 4.93 4.84
SCOP 4.2 4.3 4.0 4.7 4.1 4.3 4.3 4.3 4.3 4.4 4.5 4.1 4.5 4.3 4.5 4.4 4.6 4.3 4.4 4.2 4.5 4.5 4.3 4.4 4.3 4.3 4.3 4.4 4.4
SCOP recommended combination 2 4.1 4.3 4.1 4.6 4.0 4.2 4.2 4.2 4.2 4.3 4.4 4.1 4.5 4.2 4.4 4.4 4.5 4.2 4.3 4.2 4.4 4.4 4.2 4.3 4.2 4.2 4.3 4.3 4.3
SCOP recommended combination 3 4.2 4.2 4.1 4.5 4.2 4.1 4.1 4.1 4.2 4.2 4.4 4.0 4.4 4.1 4.3 4.3 4.4 4.1 4.2 4.1 4.3 4.3 4.1 4.2 4.1 4.1 4.2 4.2 4.2
SEER 7.2 6.7 7.0 6.5 7.6 6.5 7.3 6.2 6.9 6.3 6.7 6.2 6.6 6.5 6.5 6.4 6.7 6.2 6.6 6.5 6.8 6.6 6.3 6.3 6.2 6.2 6.4 6.7 7.0
SEER recommended combination 2 6.8 6.8 7.1 6.2 7.5 6.6 7.3 6.2 6.8 6.4 6.4 6.3 6.5 6.4 6.4 6.3 6.6 6.2 6.6 6.5 6.6 6.6 6.4 6.3 6.3 6.2 6.5 6.7 7.0
SEER recommended combination 3 7.2 6.7 6.9 6.6 7.4 6.6 7.1 6.1 6.9 6.4 6.8 6.3 6.6 6.5 6.6 6.4 6.8 6.1 6.6 6.5 6.9 6.7 6.3 6.3 6.2 6.1 6.4 6.7 7.0
ηs,c % 286.1 264.8 275.1 257.0 301.3 255.8 288.6 243.1 272.9 250.6 266.0 246.7 260.4 257.7 257.5 251.9 266.8 243.1 259.2 255.3 269.2 259.6 250.2 249.3 246.8 243.1 254.4 265.7 275.2
ηs,c recommended combination 2 270.2 270.4 280.4 246.6 296.3 259.4 290.6 244.5 269.4 251.9 252.4 249.6 256.8 253.7 254.1 247.9 262.9 244.5 260.6 257.6 263.0 259.5 252.5 247.1 248.8 244.5 255.9 267.0 276.7
ηs,c recommended combination 3 286.6 266.4 272.0 259.8 291.7 259.6 282.1 241.7 274.2 252.0 269.0 248.9 262.7 256.6 260.5 252.2 269.3 241.7 259.8 255.8 271.4 263.1 249.6 249.0 246.9 241.7 254.5 266.8 276.7
ηs,h % 165.1 169.7 158.8 183.8 160.6 168.3 168.2 167.5 167.9 172.5 175.7 162.7 178.5 167.6 175.5 174.8 179.4 169.1 172.0 166.3 176.0 176.1 167.8 171.9 168.8 168.5 170.3 171.7 173.3
ηs,h recommended combination 2 160.9 169.4 160.2 179.5 157.6 166.1 164.5 164.4 166.0 170.0 173.3 161.4 176.4 164.3 172.5 171.3 176.1 166.1 169.3 164.2 172.4 173.4 165.4 168.7 165.9 165.3 167.5 169.3 170.8
ηs,h recommended combination 3 163.2 166.2 161.0 178.5 166.5 160.4 160.4 160.5 165.0 164.7 171.9 157.3 174.1 162.1 168.6 168.4 172.6 162.2 164.4 160.0 170.3 170.1 161.9 165.4 161.5 161.5 163.0 164.3 165.5
Space cooling A Condition (35°C - 27/19) EERd   3.2 2.7 3.5 2.5 3.3 2.8 3.0 2.2 2.9 2.2 2.7 2.2 2.6 2.5 2.7 2.4 2.4 2.2 2.3 2.3 2.5 2.5 2.3 2.3 2.4 2.2 2.3 2.3 2.4
    Pdc kW 22.4 28.0 28.0 33.5 36.4 40.0 44.8 45.0 50.4 50.4 55.9 52.0 61.5 67.4 73.5 78.5 83.9 90.0 95.4 97.0 106.3 111.9 118.0 123.5 130.0 135.0 140.4 145.8 151.2
  B Condition (30°C - 27/19) EERd   5.3 5.1 5.8 4.7 5.5 4.8 5.0 4.6 5.2 4.5 4.9 4.4 4.9 4.8 4.7 4.6 4.8 4.6 4.8 4.7 4.9 4.9 4.7 4.6 4.6 4.6 4.7 4.8 5.0
    Pdc kW 16.5 20.6 20.6 24.7 26.8 29.5 33.0 33.2 37.1 37.1 41.2 38.3 45.3 49.7 54.2 57.9 61.8 66.3 70.3 71.5 78.3 82.5 86.9 91.0 95.8 99.5 103.5 107.4 111.4
  C Condition (25°C - 27/19) EERd   9.6 7.7 8.4 7.5 9.8 8.3 9.1 8.1 8.5 7.8 8.3 7.7 7.6 8.5 7.9 7.8 8.2 8.1 8.4 8.2 8.4 8.0 8.0 7.9 8.1 8.1 8.3 8.4 8.6
    Pdc kW 10.6 13.3 16.8 15.9 17.2 18.9 21.2 21.3 23.9 23.9 26.5 24.6 29.1 31.9 34.8 37.2 39.7 42.6 45.2 45.9 50.4 53.0 55.9 58.5 61.6 64.0 66.5 69.1 71.6
  D Condition (20°C - 27/19) EERd   13.1 14.1 13.5 15.1 14.8 11.3 15.0 11.2 13.6 15.0 12.5 14.6 14.6 12.4 13.2 13.3 15.9 11.2 13.7 13.6 14.9 12.6 12.3 12.7 11.2 11.2 13.0 15.0 16.7
    Pdc kW 9.4 8.4 9.6 9.8 10.0 8.4 10.0 9.5 17.8 11.6 11.8 13.6 18.2 17.3 17.6 17.7 21.3 18.9 21.0 23.1 30.8 23.6 24.8 26.0 27.4 28.4 29.6 30.7 34.7
Space cooling recommended combination 2 Space cooling recommended combination 2-=-A Condition (35°C - 27/19) Space cooling recommended combination 2-=-A Condition (35°C - 27/19)-=-EERd   2.9 2.8 3.6 2.5 3.2 2.8 3.0 2.2 2.8 2.2 2.7 2.2 2.6 2.4 2.7 2.4 2.4 2.2 2.3 2.3 2.5 2.5 2.4 2.3 2.4 2.2 2.3 2.3 2.4
    Space cooling recommended combination 2-=-A Condition (35°C - 27/19)-=-Pdc-=-kW kW 22.4 28.0 28.0 33.5 36.4 40.0 44.8 45.0 50.4 50.4 55.9 52.0 61.5 67.4 73.5 78.5 83.9 90.0 95.4 97.0 106.3 111.9 118.0 123.5 130.0 135.0 140.4 145.8 151.2
  Space cooling recommended combination 2-=-B Condition (30°C - 27/19) Space cooling recommended combination 2-=-B Condition (30°C - 27/19)-=-EERd   4.9 5.1 5.9 4.5 5.5 4.8 5.1 4.5 5.0 4.4 4.7 4.4 4.7 4.7 4.7 4.5 4.7 4.5 4.7 4.7 4.8 4.8 4.7 4.5 4.6 4.5 4.7 4.8 4.9
    Space cooling recommended combination 2-=-B Condition (30°C - 27/19)-=-Pdc-=-kW kW 16.5 20.6 20.6 24.7 26.8 29.5 33.0 33.2 37.1 37.1 41.2 38.3 45.3 49.7 54.2 57.8 61.8 66.3 70.3 71.5 78.3 82.5 86.9 91.0 95.8 99.5 103.4 107.4 111.4
  Space cooling recommended combination 2-=-C Condition (25°C - 27/19) Space cooling recommended combination 2-=-C Condition (25°C - 27/19)-=-EERd   9.1 8.0 8.5 7.1 9.5 8.5 9.2 8.2 8.5 7.9 7.8 7.9 7.5 8.5 7.8 7.7 8.0 8.2 8.5 8.4 8.2 8.0 8.2 7.9 8.3 8.2 8.4 8.6 8.8
    Space cooling recommended combination 2-=-C Condition (25°C - 27/19)-=-Pdc-=-kW kW 10.6 13.3 17.0 15.9 17.2 18.9 21.2 21.3 23.9 23.9 26.5 24.6 29.1 31.9 34.8 37.2 39.7 42.6 45.2 45.9 50.3 53.0 55.9 58.5 61.6 63.9 66.5 69.1 71.6
  Space cooling recommended combination 2-=-D Condition (20°C - 27/19) Space cooling recommended combination 2-=-D Condition (20°C - 27/19)-=-EERd   12.6 14.3 13.9 14.4 14.7 11.4 15.1 11.3 13.3 15.0 11.7 14.9 14.4 12.1 13.0 13.0 15.6 11.3 13.8 13.8 14.5 12.9 12.4 12.5 11.4 11.3 13.1 15.0 16.7
    Space cooling recommended combination 2-=-D Condition (20°C - 27/19)-=-Pdc-=-kW kW 9.2 8.5 9.8 9.6 10.0 8.4 10.1 9.5 17.7 11.6 11.8 13.6 18.1 17.2 17.5 17.6 21.2 18.9 21.1 23.1 30.5 23.6 24.8 26.0 27.4 28.4 29.6 31.2 34.9
Space cooling recommended combination 3 Space cooling recommended combination 3-=-A Condition (35°C - 27/19) Space cooling recommended combination 3-=-A Condition (35°C - 27/19)-=-EERd   3.1 2.7 3.5 2.5 3.3 2.8 3.0 2.2 2.9 2.2 2.7 2.2 2.6 2.5 2.7 2.4 2.4 2.2 2.3 2.3 2.5 2.5 2.3 2.3 2.4 2.2 2.3 2.3 2.4
    Space cooling recommended combination 3-=-A Condition (35°C - 27/19)-=-Pdc-=-kW kW 22.4 28.0 28.0 33.5 36.4 40.0 44.8 45.0 50.4 50.4 55.9 52.0 61.5 67.4 73.5 78.5 83.9 90.0 95.4 97.0 106.3 111.9 118.0 123.5 130.0 135.0 140.4 145.8 151.2
  Space cooling recommended combination 3-=-B Condition (30°C - 27/19) Space cooling recommended combination 3-=-B Condition (30°C - 27/19)-=-EERd   5.4 5.1 5.7 4.7 5.6 4.8 4.9 4.5 5.2 4.4 4.9 4.4 4.9 4.7 4.7 4.6 4.8 4.5 4.7 4.6 4.9 4.9 4.6 4.5 4.6 4.5 4.6 4.8 4.9
    Space cooling recommended combination 3-=-B Condition (30°C - 27/19)-=-Pdc-=-kW kW 16.5 20.6 20.6 24.7 26.8 29.5 33.0 33.2 37.1 37.1 41.2 38.3 45.3 49.7 54.2 57.8 61.8 66.3 70.3 71.5 78.3 82.5 87.0 91.0 95.8 99.5 103.5 107.4 111.4
  Space cooling recommended combination 3-=-C Condition (25°C - 27/19) Space cooling recommended combination 3-=-C Condition (25°C - 27/19)-=-EERd   9.6 7.9 8.3 7.8 9.0 8.5 8.9 8.0 8.6 8.0 8.4 7.9 7.8 8.5 8.2 7.9 8.4 8.0 8.5 8.3 8.6 8.3 8.0 8.0 8.2 8.0 8.3 8.6 8.8
    Space cooling recommended combination 3-=-C Condition (25°C - 27/19)-=-Pdc-=-kW kW 10.6 13.3 16.8 15.9 18.8 18.9 21.2 21.3 23.9 23.9 26.5 24.6 29.1 31.9 34.8 37.2 39.7 42.6 45.2 45.9 50.4 53.0 55.9 58.5 61.6 63.9 66.5 69.1 71.6
  Space cooling recommended combination 3-=-D Condition (20°C - 27/19) Space cooling recommended combination 3-=-D Condition (20°C - 27/19)-=-EERd   13.0 14.1 13.0 15.1 14.5 11.6 14.9 11.3 13.5 15.2 12.7 15.0 14.6 12.4 13.4 13.4 16.0 11.3 13.9 13.8 14.9 12.9 12.4 12.8 11.4 11.3 13.2 15.2 16.8
    Space cooling recommended combination 3-=-D Condition (20°C - 27/19)-=-Pdc-=-kW kW 9.4 8.5 9.4 9.9 9.9 8.4 10.1 9.5 18.0 11.8 11.8 13.6 18.4 17.5 18.0 17.9 21.7 19.0 21.3 23.0 31.2 23.6 24.8 26.0 27.4 28.4 29.6 31.7 35.4
Space heating (Average climate) TBivalent COPd (declared COP)   2.3 2.2 1.8 2.3 2.3 2.2 2.4 2.1 2.3 2.6 2.3 2.4 2.3 2.2 2.2 2.2 2.5 2.1 2.3 2.3 2.4 2.4 2.1 2.2 2.1 2.1 2.3 2.4 2.6
    Pdh (declared heating cap) kW 13.7 16.0 16.0 18.4 21.7 20.6 23.2 23.2 27.9 27.9 31.0 31.0 34.4 36.9 39.0 41.6 46.3 46.4 51.1 54.2 60.0 62.3 62.4 64.8 67.0 69.6 74.3 79.0 83.7
    Tbiv (bivalent temperature) °C -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
  TOL COPd (declared COP)   2.3 2.2 1.8 2.3 2.3 2.2 2.4 2.1 2.3 2.6 2.3 2.4 2.3 2.2 2.2 2.2 2.5 2.1 2.3 2.3 2.4 2.4 2.1 2.2 2.1 2.1 2.3 2.4 2.6
    Pdh (declared heating cap) kW 13.7 16.0 16.0 18.4 21.7 20.6 23.2 23.2 27.9 27.9 31.0 31.0 34.4 36.9 39.0 41.6 46.3 46.4 51.1 54.2 60.0 62.3 62.4 64.8 67.0 69.6 74.3 79.0 83.7
    Tol (temperature operating limit) °C -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
  A Condition (-7°C) COPd (declared COP)   2.7 2.6 1.9 2.9 2.6 2.7 2.7 2.7 2.6 2.9 2.8 2.7 2.7 2.7 2.8 2.8 2.9 2.7 2.8 2.7 2.8 2.8 2.6 2.7 2.7 2.7 2.8 2.8 2.9
    Pdh (declared heating cap) kW 12.1 14.2 14.2 16.3 19.2 18.2 20.5 20.5 24.7 24.7 27.4 27.4 30.4 32.6 34.5 36.8 40.9 41.0 45.2 47.9 53.0 55.1 55.2 57.3 59.3 61.5 65.7 69.9 74.0
  B Condition (2°C) COPd (declared COP)   4.0 4.0 4.0 4.2 3.6 4.0 3.8 3.9 4.0 4.1 4.1 3.7 4.1 3.9 4.1 4.1 4.1 3.9 4.0 3.8 4.1 4.1 4.0 4.0 4.0 3.9 4.0 4.0 4.1
    Pdh (declared heating cap) kW 7.4 8.6 8.6 9.9 11.7 11.1 12.5 12.5 15.0 15.0 16.7 16.7 18.5 19.9 21.0 22.4 24.9 25.0 27.5 29.2 32.3 33.5 33.6 34.9 36.1 37.5 40.0 42.6 45.1
  C Condition (7°C) COPd (declared COP)   6.0 6.1 6.1 7.2 6.2 6.3 6.3 6.5 6.0 6.2 6.6 6.1 6.7 6.3 6.7 6.8 6.5 6.5 6.3 6.3 6.4 6.4 6.4 6.7 6.4 6.5 6.4 6.3 6.2
    Pdh (declared heating cap) kW 5.7 5.7 5.7 6.6 7.5 7.1 8.0 8.0 11.3 9.7 12.2 10.7 12.3 12.8 13.7 14.6 16.2 16.1 17.7 18.8 21.9 21.9 21.8 22.6 23.2 24.1 25.7 27.3 29.0
  D Condition (12°C) COPd (declared COP)   9.3 10.3 9.6 9.4 10.6 6.8 11.1 6.9 10.3 8.0 9.4 8.1 10.3 7.0 7.0 7.2 9.4 7.4 8.0 8.0 8.7 8.6 6.9 6.9 6.9 6.9 7.6 7.6 8.0
    Pdh (declared heating cap) kW 8.8 7.0 8.9 7.7 9.1 5.4 9.2 5.5 7.0 8.2 7.7 8.2 7.0 5.7 6.0 6.4 7.7 7.1 8.2 8.3 9.2 9.6 11.0 11.0 11.0 11.0 13.7 13.7 16.3
Space heating (Average climate) recommended combination 2 Space heating (Average climate) recommended combination 2-=-A Condition (-7°C) Space heating (Average climate) recommended combination 2-=-A Condition (-7°C)-=-COPd (declared COP)   2.6 2.6 2.5 2.8 2.5 2.7 2.7 2.6 2.6 2.9 2.8 2.7 2.7 2.6 2.8 2.7 2.9 2.6 2.8 2.7 2.8 2.8 2.6 2.7 2.7 2.6 2.7 2.8 2.9
    Space heating (Average climate) recommended combination 2-=-A Condition (-7°C)-=-Pdh (declared heating cap)-=-kW kW 12.1 14.2 14.2 16.2 19.2 18.2 20.5 20.5 24.7 24.7 27.4 27.4 30.4 32.6 34.5 36.8 40.9 41.0 45.2 47.9 53.0 55.1 55.2 57.3 59.3 61.6 65.7 69.9 74.0
  Space heating (Average climate) recommended combination 2-=-B Condition (2°C) Space heating (Average climate) recommended combination 2-=-B Condition (2°C)-=-COPd (declared COP)   3.9 4.0 3.9 4.1 3.6 4.0 3.7 3.9 3.9 4.0 4.1 3.7 4.1 3.9 4.1 4.0 4.1 3.9 3.9 3.8 4.0 4.0 3.9 3.9 3.9 3.9 3.9 4.0 4.0
    Space heating (Average climate) recommended combination 2-=-B Condition (2°C)-=-Pdh (declared heating cap)-=-kW kW 7.4 8.6 8.6 9.9 11.7 11.1 12.5 12.5 15.0 15.0 16.7 16.7 18.5 19.9 21.0 22.4 24.9 25.0 27.5 29.2 32.3 33.5 33.6 34.9 36.1 37.5 40.0 42.5 45.1
  Space heating (Average climate) recommended combination 2-=-C Condition (7°C) Space heating (Average climate) recommended combination 2-=-C Condition (7°C)-=-COPd (declared COP)   5.8 6.1 5.8 7.0 6.1 6.2 6.1 6.4 5.9 6.0 6.5 6.1 6.6 6.2 6.5 6.7 6.4 6.4 6.2 6.2 6.2 6.3 6.3 6.5 6.3 6.4 6.2 6.1 6.0
    Space heating (Average climate) recommended combination 2-=-C Condition (7°C)-=-Pdh (declared heating cap)-=-kW kW 5.6 5.6 5.5 6.5 7.5 7.1 8.0 8.0 11.2 9.7 12.3 10.7 12.1 12.8 13.6 14.5 16.2 16.1 17.7 18.8 21.8 21.8 21.7 22.6 23.2 24.1 25.7 27.3 29.0
  Space heating (Average climate) recommended combination 2-=-D Condition (12°C) Space heating (Average climate) recommended combination 2-=-D Condition (12°C)-=-COPd (declared COP)   9.0 10.3 9.1 9.1 10.4 6.6 10.8 6.7 10.3 7.9 9.1 7.9 10.3 6.8 6.9 7.1 9.1 7.2 7.9 7.8 8.4 8.3 6.7 6.7 6.7 6.7 7.3 7.3 7.9
    Space heating (Average climate) recommended combination 2-=-D Condition (12°C)-=-Pdh (declared heating cap)-=-kW kW 8.7 6.9 8.7 7.6 9.0 5.2 9.0 5.3 6.9 8.0 7.6 8.0 6.9 5.7 6.0 6.4 7.6 7.1 8.0 8.3 9.2 9.6 10.6 10.6 10.6 10.7 13.3 13.3 16.0
  Space heating (Average climate) recommended combination 2-=-TBivalent Space heating (Average climate) recommended combination 2-=-TBivalent-=-COPd (declared COP)   2.2 2.2 2.3 2.3 2.2 2.1 2.3 2.1 2.2 2.5 2.3 2.4 2.2 2.1 2.2 2.2 2.4 2.1 2.3 2.2 2.4 2.4 2.1 2.1 2.1 2.1 2.2 2.4 2.5
    Space heating (Average climate) recommended combination 2-=-TBivalent-=-Pdh (declared heating cap)-=-kW kW 13.7 16.0 16.0 18.4 21.7 20.6 23.2 23.2 27.9 27.9 31.0 31.0 34.4 36.9 39.0 41.6 46.3 46.4 51.1 54.2 60.0 62.3 62.4 64.8 67.0 69.6 74.3 79.0 83.7
    Space heating (Average climate) recommended combination 2-=-TBivalent-=-Tbiv (bivalent temperature)-=-°C °C -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
  Space heating (Average climate) recommended combination 2-=-TOL Space heating (Average climate) recommended combination 2-=-TOL-=-COPd (declared COP)   2.2 2.2 2.3 2.3 2.2 2.1 2.3 2.1 2.2 2.5 2.3 2.4 2.2 2.1 2.2 2.2 2.4 2.1 2.3 2.2 2.4 2.4 2.1 2.1 2.1 2.1 2.2 2.4 2.5
    Space heating (Average climate) recommended combination 2-=-TOL-=-Pdh (declared heating cap)-=-kW kW 13.7 16.0 16.0 18.4 21.7 20.6 23.2 23.2 27.9 27.9 31.0 31.0 34.4 36.9 39.0 41.6 46.3 46.4 51.1 54.2 60.0 62.3 62.4 64.8 67.0 69.6 74.3 79.0 83.7
    Space heating (Average climate) recommended combination 2-=-TOL-=-Tol (temperature operating limit)-=-°C °C -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
Space heating (Average climate) recommended combination 3 Space heating (Average climate) recommended combination 3-=-A Condition (-7°C) Space heating (Average climate) recommended combination 3-=-A Condition (-7°C)-=-COPd (declared COP)   2.6 2.5 2.4 2.8 2.5 2.7 2.6 2.6 2.6 2.8 2.8 2.7 2.7 2.6 2.7 2.7 2.8 2.6 2.7 2.6 2.8 2.7 2.6 2.6 2.6 2.6 2.7 2.7 2.8
    Space heating (Average climate) recommended combination 3-=-A Condition (-7°C)-=-Pdh (declared heating cap)-=-kW kW 12.1 14.2 14.2 16.3 19.2 18.2 20.5 20.5 24.7 24.7 27.4 27.4 30.4 32.6 34.5 36.8 40.9 41.0 45.2 47.9 53.1 55.1 55.2 57.3 59.3 61.6 65.7 69.9 74.0
  Space heating (Average climate) recommended combination 3-=-B Condition (2°C) Space heating (Average climate) recommended combination 3-=-B Condition (2°C)-=-COPd (declared COP)   3.9 3.9 3.9 4.1 3.7 3.8 3.7 3.8 3.9 3.9 4.0 3.6 4.0 3.8 4.0 3.9 4.0 3.8 3.8 3.7 4.0 4.0 3.8 3.9 3.8 3.8 3.8 3.9 3.9
    Space heating (Average climate) recommended combination 3-=-B Condition (2°C)-=-Pdh (declared heating cap)-=-kW kW 7.4 8.6 8.6 9.9 11.7 11.1 12.5 12.5 15.0 15.0 16.7 16.7 18.5 19.9 21.0 22.4 24.9 25.0 27.5 29.2 32.3 33.5 33.6 34.9 36.1 37.5 40.0 42.5 45.1
  Space heating (Average climate) recommended combination 3-=-C Condition (7°C) Space heating (Average climate) recommended combination 3-=-C Condition (7°C)-=-COPd (declared COP)   5.8 6.0 5.8 6.9 6.1 5.9 5.9 6.2 5.9 5.8 6.4 5.9 6.4 6.0 6.4 6.5 6.2 6.2 6.0 6.0 6.1 6.1 6.2 6.4 6.1 6.2 6.1 5.9 5.8
    Space heating (Average climate) recommended combination 3-=-C Condition (7°C)-=-Pdh (declared heating cap)-=-kW kW 5.5 5.6 5.5 6.4 7.5 7.1 8.0 8.0 11.1 9.7 11.9 10.7 11.9 12.8 13.5 14.4 16.0 16.1 17.7 18.8 20.8 21.6 21.7 22.4 23.2 24.1 25.7 27.3 29.0
  Space heating (Average climate) recommended combination 3-=-D Condition (12°C) Space heating (Average climate) recommended combination 3-=-D Condition (12°C)-=-COPd (declared COP)   9.2 10.1 9.2 9.1 16.8 6.2 10.5 6.5 10.1 7.4 9.1 7.6 10.1 6.7 6.6 6.9 9.1 7.0 7.4 7.4 8.4 8.3 6.5 6.5 6.5 6.6 7.0 7.0 7.4
    Space heating (Average climate) recommended combination 3-=-D Condition (12°C)-=-Pdh (declared heating cap)-=-kW kW 8.7 6.9 8.7 7.4 5.1 4.9 8.9 5.1 6.9 7.6 7.4 7.7 6.9 5.7 6.0 6.4 7.4 7.1 7.9 8.3 9.2 9.6 10.2 10.2 10.2 10.7 12.7 12.7 15.2
  Space heating (Average climate) recommended combination 3-=-TBivalent Space heating (Average climate) recommended combination 3-=-TBivalent-=-COPd (declared COP)   2.3 2.1 2.2 2.3 2.2 2.1 2.3 2.1 2.2 2.5 2.3 2.3 2.2 2.1 2.2 2.2 2.4 2.1 2.3 2.2 2.4 2.3 2.1 2.1 2.1 2.1 2.2 2.3 2.5
    Space heating (Average climate) recommended combination 3-=-TBivalent-=-Pdh (declared heating cap)-=-kW kW 13.7 16.0 16.0 18.4 21.7 20.6 23.2 23.2 27.9 27.9 31.0 31.0 34.4 36.9 39.0 41.6 46.3 46.4 51.1 54.2 60.0 62.3 62.4 64.8 67.0 69.6 74.3 79.0 83.7
    Space heating (Average climate) recommended combination 3-=-TBivalent-=-Tbiv (bivalent temperature)-=-°C °C -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
  Space heating (Average climate) recommended combination 3-=-TOL Space heating (Average climate) recommended combination 3-=-TOL-=-COPd (declared COP)   2.3 2.1 2.2 2.3 2.2 2.1 2.3 2.1 2.2 2.5 2.3 2.3 2.2 2.1 2.2 2.2 2.4 2.1 2.3 2.2 2.4 2.3 2.1 2.1 2.1 2.1 2.2 2.3 2.5
    Space heating (Average climate) recommended combination 3-=-TOL-=-Pdh (declared heating cap)-=-kW kW 13.7 16.0 16.0 18.4 21.7 20.6 23.2 23.2 27.9 27.9 31.0 31.0 34.4 36.9 39.0 41.6 46.3 46.4 51.1 54.2 60.0 62.3 62.4 64.8 67.0 69.6 74.3 79.0 83.7
    Space heating (Average climate) recommended combination 3-=-TOL-=-Tol (temperature operating limit)-=-°C °C -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
Capacity range HP 8 10 10 12 13 14 16 16 18 18 20 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
PED Category   Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II Category II
  Most critical part Name   Liquid receiver Liquid receiver   Liquid receiver   Liquid receiver   Liquid receiver   Liquid receiver   Liquid receiver                                  
    Ps*V Bar*l 564 564   564   672   672   824   824                                  
Maximum number of connectable indoor units 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3) 64 (3)
Indoor index connection Min.   100.0 125.0 125.0 150.0 163.0 175.0 200.0 200.0 225.0 225.0 250.0 250.0 275.0 300.0 325.0 350.0 375.0 400.0 425.0 450.0 475.0 500.0 525.0 550.0 575.0 600.0 625.0 650.0 675.0
  Max.   260.0 325.0 325.0 390.0 423.0 455.0 520.0 520.0 585.0 585.0 650.0 650.0 715.0 780.0 845.0 910.0 975.0 1,040.0 1,105.0 1,170.0 1,235.0 1,300.0 1,365.0 1,430.0 1,495.0 1,560.0 1,625.0 1,690.0 1,755.0
Dimensions Unit Height mm 1,685 1,685   1,685   1,685   1,685   1,685   1,685                                  
    Width mm 930 930   930   1,240   1,240   1,240   1,240                                  
    Depth mm 765 765   765   765   765   765   765                                  
  Packed unit Height mm 1,820 1,820   1,820   1,820   1,820   1,820   1,820                                  
    Width mm 995 995   995   1,305   1,305   1,305   1,305                                  
    Depth mm 860 860   860   860   860   860   860                                  
Weight Unit kg 230 230   230   314   314   317   317                                  
  Packed unit kg 243 243   243   331   331   334   334                                  
Packing Material   Carton Carton   Carton   Carton   Carton   Carton   Carton                                  
  Weight kg 1.8 1.8   1.8   2.2   2.2   2.2   2.2                                  
Packing 2 Material   Wood Wood   Wood   Wood   Wood   Wood   Wood                                  
  Weight kg 11.0 11.0   11.0   14.0   14.0   14.0   14.0                                  
Packing 3 Material   Plastic Plastic   Plastic   Plastic   Plastic   Plastic   Plastic                                  
  Weight kg 0.5 0.5   0.5   0.6   0.6   0.6   0.6                                  
Casing Colour   Daikin White Daikin White   Daikin White   Daikin White   Daikin White   Daikin White   Daikin White                                  
  Material   Painted galvanized steel plate Painted galvanized steel plate   Painted galvanized steel plate   Painted galvanized steel plate   Painted galvanized steel plate   Painted galvanized steel plate   Painted galvanized steel plate                                  
Heat exchanger Type   Cross fin coil Cross fin coil   Cross fin coil   Cross fin coil   Cross fin coil   Cross fin coil   Cross fin coil                                  
  Indoor side   Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air
  Outdoor side   Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air
  Air flow rate Cooling Rated m³/h 9,720 10,500 19,440 11,100 19,440 13,380 19,440 15,600 20,220 15,060 20,820 15,660 21,600 25,320 24,480 26,700 26,160 31,200 30,660 31,260 35,880 36,660 41,700 42,300 44,580 46,800 46,260 45,720 45,180
    Heating Rated m³/h 9,720 10,500 19,440 11,100 19,440 13,380 19,440 15,600 20,220 15,060 20,820 15,660 21,600 25,320 24,480 26,700 26,160 31,200 30,660 31,260 35,880 36,660 41,700 42,300 44,580 46,800 46,260 45,720 45,180
Fan Quantity   1 1   1   2   2   2   2                                  
  External static pressure Max. Pa 78 78   78   78   78   78   78                                  
Fan motor Quantity   1 1   1   2   2   2   2                                  
  Type   DC motor DC motor   DC motor   DC motor   DC motor   DC motor   DC motor                                  
  Output W 550 550   550   750   750   750   750                                  
Compressor Quantity   1 1   1   2   2   2   2                                  
  Type   Hermetically sealed scroll compressor Hermetically sealed scroll compressor   Hermetically sealed scroll compressor   Hermetically sealed scroll compressor   Hermetically sealed scroll compressor   Hermetically sealed scroll compressor   Hermetically sealed scroll compressor                                  
  Crankcase heater W 33 33   33   33   33   33   33                                  
Operation range Cooling Min. °CDB -5.0 -5.0   -5.0   -5.0   -5.0   -5.0   -5.0                                  
    Max. °CDB 43.0 43.0   43.0   43.0   43.0   43.0   43.0                                  
  Heating Min. °CWB -20.0 -20.0   -20.0   -20.0   -20.0   -20.0   -20.0                                  
    Max. °CWB 15.5 15.5   15.5   15.5   15.5   15.5   15.5                                  
Sound power level Cooling Nom. dBA 78.0 (4) 79.1 (4) 81.0 (4) 83.4 (4) 81.0 (4) 80.9 (4) 81.0 (4) 85.6 (4) 81.6 (4) 83.8 (4) 84.5 (4) 87.9 (4) 84.8 (4) 86.3 (4) 85.3 (4) 87.6 (4) 86.6 (4) 88.6 (4) 87.8 (4) 89.9 (4) 87.2 (4) 87.3 (4) 89.1 (4) 89.8 (4) 89.3 (4) 90.4 (4) 89.8 (4) 89.3 (4) 88.6 (4)
  Heating Nom. dBA 62.7 (4) 64.8 (4) 65.7 (4) 64.9 (4) 65.7 (4) 68.3 (4) 65.7 (4) 68.6 (4) 66.9 (4) 66.3 (4) 66.9 (4) 67.0 (4) 67.8 (4) 69.6 (4) 69.9 (4) 70.1 (4) 68.7 (4) 71.6 (4) 70.6 (4) 70.9 (4) 69.7 (4) 70.2 (4) 72.4 (4) 72.4 (4) 73.3 (4) 73.4 (4) 72.7 (4) 72.0 (4) 71.1 (4)
Sound pressure level Cooling Nom. dBA 57.0 (5) 57.0 (5) 60.0 (5) 61.0 (5) 60.0 (5) 60.0 (5) 60.0 (5) 63.0 (5) 60.0 (5) 62.0 (5) 62.5 (5) 65.0 (5) 62.5 (5) 64.0 (5) 63.5 (5) 65.1 (5) 64.5 (5) 66.0 (5) 65.5 (5) 67.1 (5) 65.2 (5) 65.2 (5) 66.5 (5) 67.2 (5) 67.0 (5) 67.8 (5) 67.5 (5) 67.1 (5) 66.8 (5)
Refrigerant Type   R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A
  GWP   2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5
  Charge TCO2Eq 20.2 20.5   20.7   24.6   24.6   24.6   24.6                                  
  Charge kg 9.7 9.8   9.9   11.8   11.8   11.8   11.8                                  
Refrigerant oil Type   Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D Synthetic (ether) oil FVC68D
Piping connections Liquid Type   Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection
    OD mm 9,52 9,52 9,52 12,7 12,7 12,7 12,7 12,7 15,9 15,9 15,9 15,9 15,9 15,9 19,1 19,1 19,1 19,1 19,1 19,1 19,1 19,1 19,1 19,1 19,1 19,1 19,1 19,1 19,1
  Gas Type   Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection Braze connection
    OD mm 19.1 22.2 22.2 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6 34.9 34.9 34.9 34.9 34.9 34.9 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3 41.3
  HP/LP gas Type   Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections Brazing connections
    OD mm 15.9 19.1 19.1 19.1 19.1 22.2 22.2 22.2 22.2 22.2 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6 28.6 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9
  Total piping length System Actual m 1,000 (6) 1,000 (6) 500 (6) 1,000 (6) 500 (6) 1,000 (6) 500 (6) 1,000 (6) 500 (6) 1,000 (6) 500 (6) 1,000 (6) 1,000 (6) 1,000 (6) 1,000 (6) 1,000 (6) 1,000 (6) 1,000 (6) 1,000 (6) 1,000 (6) 1,000 (6) 1,000 (6) 1,000 (6) 1,000 (6) 1,000 (6) 1,000 (6) 1,000 (6) 1,000 (6) 1,000 (6)
Defrost method Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle Reversed cycle
Capacity control Method   Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled Inverter controlled
Indication if the heater is equipped with a supplementary heater no no no no no no no no no no no no no no no no no no no no no no no no no no no no no
Supplementary heater Back-up capacity Heating elbu kW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Power consumption in other than active mode Crankcase heater mode Cooling PCK kW 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
    Heating PCK kW 0.059 0.059 0.117 0.059 0.117 0.110 0.117 0.110 0.117 0.134 0.117 0.134 0.117 0.169 0.169 0.169 0.193 0.220 0.244 0.244 0.252 0.252 0.279 0.279 0.330 0.330 0.354 0.379 0.403
  Off mode Cooling POFF kW 0.052 0.052 0.105 0.052 0.105 0.120 0.105 0.120 0.105 0.118 0.105 0.118 0.105 0.172 0.172 0.172 0.170 0.240 0.238 0.238 0.223 0.223 0.292 0.292 0.360 0.360 0.358 0.356 0.354
    Heating POFF kW 0.059 0.059 0.117 0.059 0.117 0.110 0.117 0.110 0.117 0.134 0.117 0.134 0.117 0.169 0.169 0.169 0.193 0.220 0.244 0.244 0.252 0.252 0.279 0.279 0.330 0.330 0.354 0.379 0.403
  Standby mode Cooling PSB kW 0.052 0.052 0.105 0.052 0.105 0.120 0.105 0.120 0.105 0.118 0.105 0.118 0.105 0.172 0.172 0.172 0.170 0.240 0.238 0.238 0.223 0.223 0.292 0.292 0.360 0.360 0.358 0.356 0.354
    Heating PSB kW 0.059 0.059 0.117 0.059 0.117 0.110 0.117 0.110 0.117 0.134 0.117 0.134 0.117 0.169 0.169 0.169 0.193 0.220 0.244 0.244 0.252 0.252 0.279 0.279 0.330 0.330 0.354 0.379 0.403
  Thermostat-off mode Cooling PTO kW 0.003 0.003 0.006 0.003 0.006 0.006 0.006 0.006 0.006 0.012 0.006 0.012 0.006 0.009 0.009 0.009 0.016 0.013 0.019 0.019 0.019 0.019 0.016 0.016 0.019 0.019 0.025 0.031 0.037
    Heating PTO kW 0.068 0.068 0.136 0.068 0.136 0.119 0.136 0.119 0.136 0.144 0.136 0.144 0.136 0.187 0.187 0.187 0.212 0.238 0.263 0.263 0.279 0.279 0.306 0.306 0.357 0.357 0.382 0.406 0.431
Cooling Cdc (Degradation cooling)   0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Heating Cdh (Degradation heating)   0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Safety devices Item 01   High pressure switch High pressure switch   High pressure switch   High pressure switch   High pressure switch   High pressure switch   High pressure switch                                  
    02   Fan driver overload protector Fan driver overload protector   Fan driver overload protector   Fan driver overload protector   Fan driver overload protector   Fan driver overload protector   Fan driver overload protector                                  
    03   Inverter overload protector Inverter overload protector   Inverter overload protector   Inverter overload protector   Inverter overload protector   Inverter overload protector   Inverter overload protector                                  
    04   PC board fuse PC board fuse   PC board fuse   PC board fuse   PC board fuse   PC board fuse   PC board fuse                                  
    05   Leakage current detector Leakage current detector   Leakage current detector   Leakage current detector   Leakage current detector   Leakage current detector   Leakage current detector                                  
Standard Accessories Installation and operation manual 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
  Connection pipes 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Power supply Name   Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1
  Phase   3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~ 3N~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415 380-415
Power supply intake Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit Both indoor and outdoor unit
Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
  Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Current Nominal running current (RLA) - 50Hz Cooling A 7.7 (7) 10.5 (7) 8.2 (7) 13.8 (7) 11.8 (7) 15.6 (7) 15.4 (7) 18.5 (7) 18.2 (7) 22.0 (7) 21.5 (7) 28.5 (7) 24.3 (7) 26.2 (7) 29.4 (7) 32.3 (7) 35.8 (7) 37.0 (7) 40.5 (7) 47.0 (7) 43.5 (7) 46.3 (7) 47.5 (7) 50.8 (7) 52.6 (7) 55.5 (7) 59.0 (7) 62.5 (7) 66.0 (7)
Current - 50Hz Starting current (MSC) - remark   See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8 See note 8
  Zmax List   No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements No requirements
  Minimum Ssc value kVa 2,893 (9) 3,954 (9) 5,786 (9) 4,313 (9) 5,786 (9) 4,852 (9) 5,786 (9) 5,391 (9) 6,846 (9) 6,289 (9) 7,206 (9) 7,009 (9) 8,266 (9) 8,284 (9) 9,165 (9) 9,704 (9) 10,602 (9) 10,781 (9) 11,680 (9) 12,399 (9) 13,495 (9) 14,556 (9) 14,735 (9) 15,094 (9) 15,634 (9) 16,172 (9) 17,071 (9) 17,969 (9) 18,868 (9)
  Minimum circuit amps (MCA) A 16.1 (10) 22.0 (10) 30.0 (10) 24.0 (10) 30.0 (10) 27.0 (10) 30.0 (10) 31.0 (10) 37.0 (10) 35.0 (10) 39.0 (10) 39.0 (10) 46.0 (10) 46.0 (10) 51.0 (10) 55.0 (10) 59.0 (10) 62.0 (10) 66.0 (10) 70.0 (10) 74.0 (10) 81.0 (10) 84.0 (10) 86.0 (10) 89.0 (10) 93.0 (10) 97.0 (10) 101.0 (10) 105.0 (10)
  Maximum fuse amps (MFA) A 20 (11) 25 (11) 40 (11) 32 (11) 40 (11) 32 (11) 40 (11) 40 (11) 50 (11) 40 (11) 50 (11) 50 (11) 63 (11) 63 (11) 63 (11) 63 (11) 80 (11) 80 (11) 80 (11) 80 (11) 100 (11) 100 (11) 100 (11) 100 (11) 100 (11) 125 (11) 125 (11) 125 (11) 125 (11)
  Full load amps (FLA) Total A 1.2 (12) 1.3 (12)   1.5 (12)   1.8 (12)   2.6 (12)   2.6 (12)   2.6 (12)                                  
Wiring connections - 50Hz For power supply Quantity   5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G 5G
  For connection with indoor Quantity   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
    Remark   F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2 F1,F2
Notes (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m (1) - Cooling: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB; equivalent piping length: 7.5m; level difference: 0m
  (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m (2) - Heating: indoor temp. 20°CDB; outdoor temp. 7°CDB, 6°CWB; equivalent refrigerant piping: 7.5m; level difference: 0m
  (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%) (3) - Actual number of connectable indoor units depends on the indoor unit type and the connection ratio restriction for the system (50% ≤ CR ≤ 120%)
  (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates. (4) - Sound power level is an absolute value that a sound source generates.
  (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings. (5) - Sound pressure level is a relative value, depending on the distance and acoustic environment. For more details, please refer to the sound level drawings.
  (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual (6) - Refer to refrigerant pipe selection or installation manual
  (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB (7) - RLA is based on following conditions: indoor temp. 27°CDB, 19°CWB; outdoor temp. 35°CDB
  (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current. (8) - MSC means the maximum current during start up of the compressor. VRV IV uses only inverter compressors. Starting current is always ≤ max. running current.
  (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value (9) - In accordance with EN/IEC 61000-3-12, it may be necessary to consult the distribution network operator to ensure that the equipment is connected only to a supply wih Ssc ≥ minimum Ssc value
  (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current. (10) - MCA must be used to select the correct field wiring size. The MCA can be regarded as the maximum running current.
  (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker). (11) - MFA is used to select the circuit breaker and the ground fault circuit interrupter (earth leakage circuit breaker).
  (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan (12) - FLA means the nominal running current of the fan
  (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%. (13) - Maximum allowable voltage range variation between phases is 2%.
  (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits. (14) - Voltage range: units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits.
  (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation ) (15) - The AUTOMATIC ESEER value corresponds with normal VRV4 Heat Recovery operation, taking into account advanced energy saving operation functionality (variable refrigerant temperature control operation )
  (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality (16) - The STANDARD ESEER value corresponds with normal VRV4 Heat Recovery operation, not taking into account advanced energy saving operation functionality
  (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room. (17) - Sound values are measured in a semi-anechoic room.
  (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA (18) - Soundpressure system [dBA] = 10*log[10^(A/10)+10^(B/10)+10^(C/10)] , with Unit A = A dBA, Unit B = B dBA, Unit C = C dBA
  (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase (19) - EN/IEC 61000-3-12: European/international technical standard setting the limits for harmonic currents produced by equipment connected to public low-voltage system with input current > 16A and ≤ 75A per phase
  (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power (20) - Ssc: Short-circuit power
  (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual (21) - For detailed contents of standard accessories, see installation/operation manual
  (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination (22) - Multi combination (10~54HP) data is corresponding with the standard multi combination