Specifications Table for EWAH-TZXSB

EWAH180TZXSB1 EWAH220TZXSB1 EWAH270TZXSB1 EWAH300TZXSB1 EWAH350TZXSB2 EWAH390TZXSB2 EWAH430TZXSB2 EWAH480TZXSB2 EWAH580TZXSB2 EWAH620TZXSB2 EWAH670TZXSB2 EWAH710TZXSB2 EWAH760TZXSB2 EWAH820TZXSB2 EWAH930TZXSB2 EWAH990TZXSB2
Cooling capacity Nom. kW 180 225 271 300 355 392 428 482 574 620 673 714 759 825 926 988
Capacity control Method   Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable
  Minimum capacity % 33.4 26.7 21.6 18.7 16.7 15.4 14.3 12.5 10.8 10 10 10 10 11.7 10 10
Power input Cooling Nom. kW 51.8 66.3 79 89.6 103 114 125 144 164 181 194 209 224 243 274 307
EER 3.49 3.39 3.43 3.35 3.44 3.42 3.42 3.33 3.5 3.41 3.45 3.4 3.38 3.39 3.37 3.22
ESEER 5.14 5.21 4.95 5.16 4.94 4.95 5.06 5.05 5.05 5.08 4.96 5.13 5.23 5.26 5.32 5.08
Dimensions Unit Depth mm 3,183 4,083 3,183 4,083 5,883 5,883 6,783 7,776 6,783 7,683 7,683 8,583 9,483 10,383 11,283 11,283
    Height mm 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537
    Width mm 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258
Weight Operation weight kg 2,484.35 2,862.5 2,606.5 2,972.5 4,598.2 4,870.2 5,237.6 5,981.6 6,021 6,656.8 6,647.8 7,625.2 7,884 8,343 8,631.2 8,631.2
  Unit kg 2,447 2,813 2,557 2,923 4,445.2 4,629.2 5,004.6 5,748.6 5,720 6,364.8 6,364.8 7,140.2 7,431 7,879 8,178.2 8,178.2
Water heat exchanger Type   Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube
  Water volume l 37 50 50 50 153 241 233 233 301 292 283 485 453 464 453 453
Air heat exchanger Type   Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel
Fan Air flow rate Nom. l/s 26,172 34,896 26,172 34,896 52,344 52,344 61,068 69,792 61,068 69,792 69,792 78,516 87,240 95,964 104,688 104,688
  Speed rpm 760 760 760 760 760 760 760 760 760 760 760 760 760 760 760 760
Compressor Quantity   1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
  Type   Driven vapour compressor Driven vapour compressor Driven vapour compressor Driven vapour compressor Driven vapour compressor Driven vapour compressor Driven vapour compressor Driven vapour compressor Driven vapour compressor Driven vapour compressor Driven vapour compressor Driven vapour compressor Driven vapour compressor Driven vapour compressor Driven vapour compressor Driven vapour compressor
Operation range Air side Cooling Max. °CDB                           55    
      Min. °CDB                           -18    
  Water side Cooling Max. °CDB                           18    
      Min. °CDB                           -8    
Sound power level Cooling Nom. dBA 97.19 98.16 101.14 101.19 100.19 100.4 100.7 101.94 104.14 104.19 104.19 104.21 104.22 104.34 105.79 106.49
Sound pressure level Cooling Nom. dBA 77.7 78.21 81.66 81.23 79.42 79.63 79.57 80.45 83.37 82.73 82.73 82.45 82.17 82.3 83.22 83.92
Refrigerant Type   R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze) R-1234(ze)
  GWP   7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
  Circuits Quantity   1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
  Charge kg 39 52 39 52 73.2 73.2 84.6 97.6 102 116.8 116.8 131.2 146 160 175.2 175.2
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
Compressor Starting method   Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter
Notes All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
  The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only
  Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding
  The sound pressure level is measured via a microphone at 1m distance of the unit. The sound pressure level is measured via a microphone at 1m distance of the unit. The sound pressure level is measured via a microphone at 1m distance of the unit. The sound pressure level is measured via a microphone at 1m distance of the unit. The sound pressure level is measured via a microphone at 1m distance of the unit. The sound pressure level is measured via a microphone at 1m distance of the unit. The sound pressure level is measured via a microphone at 1m distance of the unit. The sound pressure level is measured via a microphone at 1m distance of the unit. The sound pressure level is measured via a microphone at 1m distance of the unit. The sound pressure level is measured via a microphone at 1m distance of the unit. The sound pressure level is measured via a microphone at 1m distance of the unit. The sound pressure level is measured via a microphone at 1m distance of the unit. The sound pressure level is measured via a microphone at 1m distance of the unit. The sound pressure level is measured via a microphone at 1m distance of the unit. The sound pressure level is measured via a microphone at 1m distance of the unit. The sound pressure level is measured via a microphone at 1m distance of the unit.
  The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition
  Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
  All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options.
  Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.
  Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage.
  Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book
  All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data.
  For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS).
  The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding The sound pressure level is calculated from the sound power level and is for information only and not considered binding
  Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water
  Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.