EWAD290T-SLB2 EWAD330T-SLB2 EWAD370T-SLB2 EWAD510T-SLB2 EWAD520T-SLB2 EWAD580T-SLB2 EWAD700T-SLB2 EWAD800T-SLB2 EWAD940T-SLB2 EWADC10T-SLB2 EWADH10T-SLB2 EWADC11T-SLB2 EWADH12T-SLB2 EWADH13T-SLB2 EWADH14T-SLB2 EWADH15T-SLB3 EWADH16T-SLB3 EWADC17T-SLB3 EWADH18T-SLB3 EWADC19T-SLB3 EWADC20T-SLB3 EWADC21T-SLB3
Cooling capacity Nom. kW 290.7 334.5 373.4 505.8 522.7 575.8 701.3 809.9 936.3 999.7 1,051 1,135 1,268 1,352 1,456 1,579 1,684 1,762 1,871 1,967 2,065 2,148
  Rated kW 290.7 334.5 373.4 505.8 522.7 575.8 701.3 809.9 936.3 999.7 1,051 1,135 1,268 1,352 1,456              
Capacity control Method   Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Fixed Stepless Stepless Stepless Stepless Stepless Stepless Stepless
  Minimum capacity % 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 8.3 8.3 8.3 8.3 8.3 8.3 8.3
Power input Cooling Nom. kW 92.73 111.6 120.8 166.6 171 189.6 234.1 266.1 308.3 340.7 362.4 387.9 438.8 464.4 490.7 534 563 605.3 654.1 682.5 710 735.3
EER 3.135 2.996 3.09 3.037 3.057 3.036 2.996 3.043 3.037 2.934 2.903 2.928 2.89 2.913 2.969 2.956 2.992 2.912 2.861 2.882 2.908 2.922
ESEER 3.86 3.73 3.74 3.87 3.95 4.05 3.87 3.89 3.82 3.89 3.74 3.77 3.77 3.79 3.8 3.89 3.93 3.88 3.73 3.71 3.66 3.71
IPLV 4.48 4.38 4.37 4.83 5.38 5.49 4.93 4.55 4.69 4.61 4.41 4.46 4.46 4.5 4.53 4.58 4.61 4.54 4.45 4.46 4.4 4.53
SEER 3.8 3.8 3.8 4.1 4.1 4.2 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.12 4.14 4.13 4.12 4.11 4.11 4.12
Dimensions Unit Depth mm 3,230 3,230 4,130 4,130 5,030 5,030 5,976 5,976 6,876 6,876 6,876 7,776 7,776 8,676 9,576 10,509 11,409 11,409 11,409 12,309 13,209 14,109
    Height mm 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537 2,537
    Width mm 2,258 2,258 2,258 2,258 2,258 2,258 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282
Weight Operation weight kg 3,161 3,161 4,274 4,894 5,030 5,030 5,825 5,825 6,188 6,188 6,710 6,981 7,272 8,554 8,887 10,460 11,446 11,446 11,589 11,855 12,237 12,457
  Unit kg 3,061 3,061 4,104 4,724 4,860 4,860 5,527 5,525 5,858 5,858 6,229 6,520 6,780 8,084 8,426 9,938 10,575 10,575 10,636 10,902 11,202 11,422
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Water heat exchanger Type   Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube
  Water flow rate Cooling Nom. l/s 13.9 16 17.9 24.2 25 27.6 33.6 38.7 44.8 47.8 50.3 54.3 60.7 64.7 69.8 75.5 80.6 84.4 89.6 94.2 98.9 102.9
  Water pressure drop Cooling Nom. kPa 28.5 31.1 42 30.5 43.6 60.4 51.4 32.4 39.5 44.7 41.6 32.7 34.2 44.5 61.3 43.8 49.3 53.5 56.4 64.5 64.8 69.6
  Water volume l 89 89 181 164 170 164 298 300 330 330 481 461 492 470 461 522 871 871 953 953 1,035 1,035
  Insulation material   Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell
Air heat exchanger Type   Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel
Heat exchanger Indoor side   water water water water water water water water water water water water water water water water water water water water water water
  Outdoor side   Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air Air
Fan Quantity   6 6 8 8 10 10 12 12 14 14 14 16 16 18 20 22 24 24 24 26 28 30
  Type   Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans Direct propeller, on/off fans
  Air flow rate Nom. l/s 33,129 33,129 44,172 44,172 55,214 55,214 66,257 66,257 77,300 77,300 77,300 88,343 88,343 99,386 110,429 121,472 132,515 132,515 132,515 143,557 154,600 165,643
    Cooling Rated m³/h 119,264.4 119,264.4 159,019.2 159,019.2 198,770.4 198,770.4 238,525.2 238,525.2 278,280 278,280 278,280 318,034.8 318,034.8 357,789.6 397,544.4 437,299 477,054 477,054 477,054 516,805 556,560 596,315
  Diameter mm 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800
  Speed rpm 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900
Fan motor Drive   ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF
  Input Cooling W 10,020 10,020 13,360 13,360 16,700 16,700 20,040 20,040 23,380 23,380 23,380 26,720 26,720 30,060 33,400 36,740 40,080 40,080 40,080 43,420 46,760 50,100
Compressor Quantity   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
  Type   Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression
  Driver   Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor
  Oil Charged volume l 26 26 26 32 32 32 34 34 42 42 42 42 50 50 50 75 75 75 75 75 75 75
Operation range Air side Cooling Max. °CDB 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
      Min. °CDB -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
  Water side Cooling Max. °CDB 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
      Min. °CDB -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
Sound power level Cooling Nom. dBA 94 94 95 97 97 97 96 96 97 98 97 98 98 98 98 98 100 100 100 100 100 100
Sound pressure level Cooling Nom. dBA 74 74 75 77 77 77 79 79 80 80 80 79 79 79 79 76 77 77 77 77 77 77
Refrigerant Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  GWP   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430
  Circuits Quantity   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3
  Charge kg 50 50 55 58 66 67 93.6 93.6 109.2 109.2 109.2 124.8 124.8 140.4 156 172 187 187 187 203 218 234
Charge Per circuit kgCO2Eq 35,750 35,750 39,325 41,470 47,190 47,905 66,924 66,924 78,078 78,078 78,078 89,232 89,232 100,386 111,540 81,987 89,137 89,137 89,137 96,763 103,913 111,540
  Per circuit TCO2Eq 35.75 35.75 39.32 41.47 47.19 47.90 66.92 66.92 78.08 78.08 78.08 89.23 89.23 100.39 111.54              
Piping connections Evaporator water inlet/outlet (OD)   114.3 114.3 139.7 139.7 139.7 139.7 6” 6” 6” 6” 8" 8" 8" 8" 8" 219.1mm 273mm 273mm 273mm 273mm 273mm 273mm
Space cooling A Condition 35°C Pdc kW 290.7 334.5 373.4 505.8 522.7 575.8 701.3 809.9 936.3 999.7 1,051.0 1,135.0 1,268.0 1,352.0 1,456.0              
    EERd   3.1 3.0 3.1 3.0 3.1 3.0 3.0 3.0 3.0 2.9 2.9 2.9 2.9 2.9 3.0              
  B Condition 30°C Pdc kW 219.1 254.8 282.5 381.9 395.6 426.7 530.8 608.4 704.7 755.7 795.4 859.2 958.5 1,020.1 1,081.9              
    EERd   3.7 3.5 3.6 3.7 3.8 3.7 3.7 3.6 3.6 3.6 3.5 3.6 3.5 3.6 3.5              
  C Condition 25°C Pdc kW 140.2 163.7 181.1 244.5 253.5 271.3 340.2 388.7 450.7 485.4 510.9 550.5 613.8 652.9 692.2              
    EERd   4.4 4.3 4.3 4.6 4.4 5.1 4.3 4.3 4.4 4.3 4.3 4.3 4.3 4.3 4.3              
  D Condition 20°C Pdc kW 64.0 75.7 83.1 111.8 116.4 121.2 156.1 176.8 205.4 224.0 236.0 252.5 281.1 298.1 315.3              
    EERd   4.3 4.2 4.1 4.7 4.9 4.7 5.1 5.1 4.8 4.9 5.0 5.0 5.0 5.0 5.0              
  ηs,c % 149.5 149.5 149.6 161.6 161.1 164.6 161.9 161.7 161.3 161.6 162.1 161.9 161.5 162.1 161.7 161.9 162.7 162.1 161.7 161.5 161.6 161.7
General Supplier/Manufacturer details Name and address   Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy
LW(A) Sound power level (according to EN14825) dB(A) 94 94 95 97 97 97 96 96 97 98 97 98 98 98 98 98 100 100 100 100 100 100
Cooling Cdc (Degradation cooling)   0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Standard rating conditions used Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application
Power consumption in other than active mode Crankcase heater mode PCK W 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250              
  Off mode POFF W 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000              
  Standby mode Cooling PSB W 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100              
  Thermostat-off mode PTO Cooling W 0.410 0.470 0.420 0.560 0.420 0.520 0.550 0.500 0.600 0.850 0.790 0.630 0.820 0.890 0.980              
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Unit Starting current Max A 253 264 306 470 493 493 574 645 697 705 773 797 877 925 933 1,075 1,161 1,217 1,217 1,270 1,324 1,324
  Running current Cooling Nom. A 76.76 94.25 195.63 144.71 148.11 171.97 370.76 422.34 486.54 534.13 572.46 610 692.46 727.9 763.34 839 885 951 1,029 1,073 1,118 1,158
    Max A 211 242 272 345 373 395 492 536 621 675 709 768 838 897 956 986 1,118 1,188 1,257 1,323 1,389 1,455
  Max unit current for wires sizing A 231 265 297 378 408 432 538 587 679 738 776 840 918 982 1,046 1,079 1,223 1,300 1,377 1,449 1,521 1,592
Fans Nominal running current (RLA) A 15.48 15.48 20.64 20.64 25.8 25.8 30.96 30.96 36.12 36.12 36.12 41.28 41.28 46.44 51.6 56.8 61.9 61.9 61.9 67.08 72.24 77.4
Compressor Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
  Maximum running current A 82 99 126 162 162 185 274 274 398 452 398 452 398 452 452 310 398 398 398 459 459 459
  Starting method   Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta
Notes All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
  Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (2) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding
  The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (3) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition
  Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (4) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
  All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options. (5) - All data refers to the standard unit without options.
  All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data. (6) - All data are subject to change without notice. Please refer to the unit nameplate data.
  Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water (7) - Fluid: Water
  Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.
  Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage. (12) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book