EWAD620C-SR EWAD720C-SR EWAD790C-SR EWAD880C-SR EWAD920C-SR EWADC10C-SR EWADC11C-SR EWADC12C-SR EWADC13C-SR EWADH14C-SR EWADC14C-SR EWADC15C-SR EWADC16C-SR EWADC17C-SR EWADC18C-SR EWADC19C-SR
Cooling capacity Nom. kW 616 (1) 712 (1) 786 (1) 872 (1) 918 (1) 1,016 (1) 1,107 (1) 1,266 (1) 1,363 (1) 1,316 (1) 1,465 (1) 1,550 (1) 1,616 (1) 1,710 (1) 1,790 (1) 1,828 (1)
Capacity control Method   Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless
  Minimum capacity % 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 7.0 12.5 7.0 7.0 7.0 7.0 7.0 7.0
Power input Cooling Nom. kW 226 (1) 276 (1) 317 (1) 334 (1) 373 (1) 398 (1) 422 (1) 461 (1) 522 (1) 499 (1) 582 (1) 609 (1) 654 (1) 706 (1) 722 (1) 762 (1)
EER 2.74 (1) 2.59 (1) 2.48 (1) 2.61 (1) 2.46 (1) 2.55 (1) 2.63 (1) 2.75 (1) 2.61 (1) 2.63 (1) 2.52 (1) 2.54 (1) 2.47 (1) 2.42 (1) 2.48 (1) 2.40 (1)
ESEER 3.91 3.78 3.81 3.79 3.98 3.76 3.95 3.92 3.78 3.81 3.70 3.72 3.66 3.70 3.71 3.66
Dimensions Unit Depth mm 6,285 6,285 6,285 6,285 6,285 7,185 8,085 8,985 10,285 8,985 10,285 11,185 11,185 11,185 12,085 12,085
    Height mm 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540
    Width mm 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285 2,285
Weight Operation weight kg 6,200 6,280 6,300 6,820 7,100 7,540 7,810 8,570 11,170 8,570 11,170 11,550 11,700 12,560 12,920 12,920
  Unit kg 5,920 6,030 6,050 6,570 6,850 7,300 7,570 8,190 10,750 8,190 10,770 11,150 11,210 11,680 12,040 12,040
Water heat exchanger Type   Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube Single pass shell & tube
  Water volume l 266 266 251 251 251 243 243 386 421 386 408 408 474 850 850 850
Air heat exchanger Type   High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type
Fan Air flow rate Nom. l/s 41,007 41,007 41,007 49,208 49,208 57,410 65,611 73,812 82,014 73,812 82,014 90,215 90,215 90,215 98,417 98,417
  Speed rpm 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700
Compressor Quantity   2 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3
  Compressor-=-Type   Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor
Operation range Air side Cooling Max. °CDB 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46
      Min. °CDB -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
  Water side Cooling Max. °CDB 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
      Min. °CDB -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
Sound power level Cooling Nom. dBA 92 92 92 93 93 94 94 94 95 94 95 95 95 96 96 96
Sound pressure level Cooling Nom. dBA 71 72 72 72 73 73 73 73 73 73 73 73 73 74 74 74
Refrigerant Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  GWP   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430
  Circuits Quantity   2 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3
Charge Per circuit kg 64.0 64.0 64.0 76.5 80.0 91.0 94.0 110.0 86.7 110.0 86.7 86.7 86.7 91.7 101.7 101.7
  Per circuit TCO2Eq 91.5 91.5 91.5 109.4 114.4 130.1 134.4 157.3 123.9 157.3 123.9 123.9 123.9 131.1 145.4 145.4
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
Compressor Starting method   Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta
Notes Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511 Performance calculations according to EN 14511
  Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units
  Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 %
  Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage.
  Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water Fluid: Water
  For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS). For more details on the operating limits please refer to the Chiller Selection Software (CSS).
  Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.